Thermal Resistance Calculator

Understanding Thermal Resistance

Thermal resistance represents the temperature difference per unit of heat flow across a structure. It is crucial for thermal management in electronic systems.

θtotal = θjc + θcs + θsa (Series)
1/θtotal = 1/θ1 + 1/θ2 + ... (Parallel)
ΔT = P × θtotal
Rcontact = t / (k × A)

Thermal Path

The thermal path represents the route that heat takes from source to ambient:

  • Junction to case (internal)
  • Case to heat sink (interface)
  • Heat sink to ambient (external)
  • Additional parallel paths
  • PCB conduction path

Thermal Contact Resistance

Contact resistance occurs at the interface between two surfaces and can significantly impact overall thermal performance.

How to Minimize Contact Resistance

  • Use thermal interface materials (TIM)
  • Ensure proper surface flatness
  • Apply appropriate mounting pressure
  • Clean contact surfaces
  • Choose compatible materials
Interface TypeResistance (°C/W)Notes
Dry Contact0.5-1.0Poor thermal transfer
Thermal Paste0.2-0.3Good for uneven surfaces
Thermal Pad0.3-0.5Easy to apply
Liquid Metal0.1-0.2Excellent but conductive

Thermal Resistance Network

Thermal networks can be analyzed similarly to electrical circuits:

TypeFormulaApplication
SeriesRtotal = R1 + R2 + R3Single path heat flow
Parallel1/Rtotal = 1/R1 + 1/R2Multiple heat paths
ComplexMixed calculationReal-world systems

Design Considerations

Key factors to consider in thermal design:

  • Power dissipation requirements
  • Space constraints
  • Cost limitations
  • Reliability targets
  • Environmental conditions

Heat Sink Design

Heat sink design involves optimizing multiple parameters:

Key Factors:

  • Fin spacing and thickness
  • Base thickness
  • Surface area
  • Material selection
  • Airflow characteristics
TypePerformanceApplications
StampedBasicLow-power devices
ExtrudedGoodMedium-power devices
ForgedExcellentHigh-power devices

Troubleshooting Guide

Common thermal problems and their solutions:

High Junction Temperature

Possible Causes:

  • Poor thermal interface
  • Inadequate heat sink
  • High ambient temperature

Solutions:

  • Reapply thermal paste
  • Upgrade heat sink
  • Improve ventilation

Thermal Cycling Issues

Possible Causes:

  • Material expansion mismatch
  • Poor mounting pressure
  • TIM degradation

Solutions:

  • Use compatible materials
  • Adjust mounting pressure
  • Replace TIM regularly

Preventive Measures:

  • Regular maintenance
  • Temperature monitoring
  • Proper installation procedures
  • Quality components

Applications

Thermal resistance analysis is essential in various electronic applications:

  • Heat sink design and selection
  • Semiconductor device cooling
  • PCB thermal management
  • Power electronics cooling
  • LED thermal design
  • Electronic packaging

Quick Reference

Package Thermal Resistance

TO-220: 3-5°C/W
DPAK: 5-8°C/W
QFN: 8-15°C/W
SOIC: 15-25°C/W

Design Tips

  • Minimize thermal interfaces
  • Use thermal paste/pad
  • Add thermal vias in PCB
  • Ensure good surface contact
  • Consider airflow path

Common Values

TIM Properties

Thermal Paste: 3-8 W/m·K
Thermal Pad: 1-5 W/m·K
Phase Change: 1-3 W/m·K
Thermal Grease: 0.7-3 W/m·K

Contact Resistance

Dry Contact: 0.5-1.0°C/W
With TIM: 0.1-0.3°C/W
Soldered: 0.05-0.1°C/W
Clamped: 0.2-0.5°C/W