Thermal Resistance Calculator

Understanding Thermal Resistance

1. Basic Principles

Thermal resistance represents the temperature difference per unit of heat flow across a structure. It is crucial for thermal management in electronic systems.

θtotal = θjc + θcs + θsa
θparallel = 1 / (1/θ1 + 1/θ2 + ...)
ΔT = P × θtotal
Rcontact = t / (k × A)

Common Questions

What is Thermal Resistance?

Thermal resistance represents the temperature difference per unit of heat flow across a structure. It measures how well a material or system resists heat flow, similar to electrical resistance.

How to Calculate Thermal Resistance?

Thermal resistance can be calculated using:

  • R = ΔT / Q (temperature difference / heat flow)
  • R = L / (k × A) for conduction
  • R = 1 / (h × A) for convection
  • Rtotal = R1 + R2 + ... (series)
  • 1/Rtotal = 1/R1 + 1/R2 + ... (parallel)

How to Calculate Heat Sink Thermal Resistance?

Heat sink thermal resistance calculation involves:

  • Base plate resistance
  • Spreading resistance
  • Fin efficiency
  • Convection resistance
  • Interface resistance

Material Thermal Resistance

MaterialThermal Resistance (K·m/W)Applications
Copper0.0025Heat sinks, PCB
Aluminum0.0042Heat spreaders
FR40.25PCB substrate

2. Thermal Path

Common thermal resistance paths:

  • Junction to Case (θjc)
  • Case to Heatsink (θcs)
  • Heatsink to Ambient (θsa)
  • Thermal Interface Material
  • PCB Thermal Vias
  • Contact Resistance

3. Applications

Thermal resistance analysis is used in:

  • Heat Sink Design
  • Package Selection
  • TIM Selection
  • PCB Design
  • Cooling System
  • Thermal Management

Thermal Contact Resistance

What is Thermal Contact Resistance?

Thermal contact resistance occurs at the interface between two materials in thermal contact. It depends on surface roughness, contact pressure, and interface materials.

How to Minimize Contact Resistance

Methods to reduce thermal contact resistance:

  • Use thermal interface materials
  • Increase contact pressure
  • Improve surface finish
  • Ensure proper mounting
  • Select compatible materials
Interface TypeContact Resistance (°C/W)Notes
Dry Contact0.5-1.0Poor thermal transfer
Thermal Paste0.1-0.3Common solution
Thermal Pad0.2-0.5Easy to apply

Thermal Resistance Network

Network Analysis

Thermal resistance networks can be analyzed similar to electrical circuits:

  • Series: Total resistance is sum of individual resistances
  • Parallel: Total resistance follows reciprocal rule
  • Complex networks can be simplified
  • Temperature difference acts like voltage
  • Heat flow acts like current

Network Examples

ConfigurationFormulaApplication
Series PathRtotal = R1 + R2 + R3Single heat path
Parallel Paths1/Rtotal = 1/R1 + 1/R2Multiple paths
Mixed NetworkCombine rulesComplex systems

4. Design Considerations

Key factors in thermal design:

  • Material Properties
  • Surface Finish
  • Contact Pressure
  • Air Flow
  • Mounting Method
  • Space Constraints

Heat Sink Thermal Resistance

Heat Sink Design Factors

Key considerations for heat sink thermal resistance:

  • Base plate thickness and material
  • Fin geometry and spacing
  • Surface area optimization
  • Air flow characteristics
  • Mounting pressure and interface
Heat Sink TypeThermal Resistance (°C/W)Application
Stamped4-10Low power
Extruded1-4Medium power
Bonded Fin0.2-1.0High power

Thermal Resistance in Different Materials

Common Materials

MaterialThermal ResistanceUsage
CopperLowHeat sinks
AluminumMediumEnclosures
Stainless SteelHighStructural

Material Selection Factors

  • Thermal conductivity
  • Cost considerations
  • Manufacturing process
  • Environmental conditions
  • Weight constraints

Troubleshooting Guide

Common Problems

IssuePossible CausesSolutions
High Thermal Resistance• Poor contact
• Insufficient TIM
• Air gaps
• Check mounting pressure
• Reapply TIM
• Clean surfaces
Uneven Temperature• Non-uniform pressure
• Warped surfaces
• Poor spreading
• Adjust mounting
• Use thicker TIM
• Add spreader
Degrading Performance• TIM pump-out
• Surface oxidation
• Contamination
• Replace TIM
• Clean surfaces
• Check environment

Diagnostic Steps

Follow these steps to identify thermal resistance issues:

  • Measure temperatures at multiple points
  • Calculate actual thermal resistance
  • Compare with expected values
  • Inspect thermal interfaces
  • Check mounting pressure
  • Verify airflow patterns

Prevention Tips

  • Regular maintenance schedule
  • Monitor temperature trends
  • Document thermal performance
  • Use quality thermal materials
  • Follow mounting guidelines
  • Consider environmental factors

When to Take Action

  • Temperature exceeds limits
  • Thermal resistance increases by >20%
  • Uneven temperature distribution
  • Visible TIM degradation
  • Performance degradation
  • After system modifications

Quick Reference

Package θjc

TO-220: 3-5°C/W
DPAK: 5-8°C/W
QFN: 8-15°C/W
SOIC: 15-25°C/W

Design Tips

  • • Minimize interfaces
  • • Use thermal paste
  • • Add thermal vias
  • • Ensure good contact
  • • Consider airflow

Common Values

TIM Properties

Paste: 0.5-3.0 W/m·K
Pad: 1.0-5.0 W/m·K
Grease: 0.7-3.0 W/m·K
Phase Change: 1.0-5.0 W/m·K

Contact Resistance

Dry: 0.5-1.0°C/W
With TIM: 0.1-0.3°C/W
Soldered: 0.05-0.1°C/W
Clamped: 0.2-0.5°C/W