Thermal Calculator

Understanding Thermal Management

1. Thermal Basics

Proper thermal management is crucial for semiconductor reliability and performance. Heat flow follows a path from the junction through various thermal resistances to the ambient environment.

  • Junction temperature (Tj)
  • Case temperature (Tc)
  • Heat sink temperature (Ts)
  • Ambient temperature (Ta)

2. Thermal Energy Calculations

How to calculate thermal energy in different scenarios:

Energy TypeFormulaUnits
From TemperatureQ = m × c × ΔTJoules (J)
From Kinetic EnergyQ = KE × efficiencyJoules (J)

3. Thermal Resistance

Thermal resistance represents the opposition to heat flow:

Tj = Ta + (P × θja)
θja = θjc + θcs + θsa
where:
θja: Junction to ambient
θjc: Junction to case
θcs: Case to sink
θsa: Sink to ambient

3. Power Dissipation

Power dissipation considerations:

  • Maximum power rating
  • Temperature derating
  • Safe operating area
  • Thermal runaway prevention

4. Heat Sink Selection

Heat sink requirements calculation:

  • Required thermal resistance
  • Surface area and fin design
  • Mounting considerations
  • Air flow requirements

5. Thermal Conductivity Calculations

How to calculate thermal conductivity and related parameters:

ParameterFormulaUnits
Thermal Conductivityk = (Q × L)/(A × ΔT)W/(m·K)
R-ValueR = L/(k × A)m²·K/W

6. Thermal Expansion Analysis

Calculating thermal expansion in different materials:

  • Linear Expansion:
    • ΔL = α × L × ΔT
    • α: Linear expansion coefficient
    • L: Original length
    • ΔT: Temperature change
  • Material Coefficients:
    • Steel: 11-13 × 10⁻⁶/°C
    • Aluminum: 23-24 × 10⁻⁶/°C
    • Copper: 16-17 × 10⁻⁶/°C
    • Glass: 8-9 × 10⁻⁶/°C

7. Thermal Equilibrium

How to calculate thermal equilibrium temperature:

System TypeFormulaExample
Two BodiesTf = (m₁c₁T₁ + m₂c₂T₂)/(m₁c₁ + m₂c₂)Metal-water system
Multiple BodiesTf = Σ(mᵢcᵢTᵢ)/Σ(mᵢcᵢ)Complex systems

8. Thermal Efficiency

How to calculate thermal efficiency in different systems:

System TypeFormulaTypical Range
Heat Engineη = (Qh - Qc)/Qh30-60%
Rankine Cycleη = Wnet/Qin35-45%

9. Thermal Boundary Layer

Calculating thermal boundary layer thickness:

  • Laminar Flow:
    • δt = 5x/√(Rex × Pr)
    • Rex: Reynolds number
    • Pr: Prandtl number
    • x: Distance from leading edge
  • Key Parameters:
    • Flow velocity
    • Fluid properties
    • Surface temperature
    • Heat transfer coefficient

10. Thermal Time Constant

Understanding thermal response time:

ParameterFormulaApplication
Time Constantτ = R × CTransient response
Temperature RiseT(t) = Tf(1 - e^(-t/τ))Dynamic behavior

11. Thermal Stress Analysis

How to calculate thermal stress in materials:

ParameterFormulaConsiderations
Thermal Stressσ = E × α × ΔTMaterial properties
Strain EnergyU = (σ²/2E) × VVolume effects

12. PCB Thermal Design

PCB thermal calculations and considerations:

  • Via Thermal Resistance:
    • Rth = L/(k × A × N)
    • N: Number of vias
    • A: Via cross-section
    • k: Copper conductivity
  • Thermal Relief Design:
    • Spoke width calculation
    • Air gap spacing
    • Copper thickness
    • Connection angle

13. Thermal Noise Calculations

Understanding thermal noise in electronic systems:

ParameterFormulaNotes
Noise VoltageVn = √(4kTRB)Johnson noise
Noise PowerPn = kTBAvailable power

8. Design Guidelines

Best practices for thermal design:

  • Temperature margin (20% typical)
  • Power derating with temperature
  • Proper component spacing
  • Air flow optimization
  • Thermal measurement points
  • Worst-case analysis

Quick Reference

Typical Values

θjc: 0.5-5°C/W
θcs: 0.2-1°C/W
θsa: 1-50°C/W
Tj(max): 125-150°C

Thermal Compounds

Silicone: 0.7-3.0 W/m·K
Metal Oxide: 3-8 W/m·K
Liquid Metal: 40-80 W/m·K

Design Tips

  • • Use proper thermal compound
  • • Ensure good surface contact
  • • Consider air flow direction
  • • Monitor critical points
  • • Add temperature sensors
  • • Plan for maintenance