Thermal Calculator
Understanding Thermal Management
1. Thermal Basics
Proper thermal management is crucial for semiconductor reliability and performance. Heat flow follows a path from the junction through various thermal resistances to the ambient environment.
- Junction temperature (Tj)
- Case temperature (Tc)
- Heat sink temperature (Ts)
- Ambient temperature (Ta)
2. Thermal Energy Calculations
How to calculate thermal energy in different scenarios:
Energy Type | Formula | Units |
---|---|---|
From Temperature | Q = m × c × ΔT | Joules (J) |
From Kinetic Energy | Q = KE × efficiency | Joules (J) |
3. Thermal Resistance
Thermal resistance represents the opposition to heat flow:
Tj = Ta + (P × θja)
θja = θjc + θcs + θsa
where:
θja: Junction to ambient
θjc: Junction to case
θcs: Case to sink
θsa: Sink to ambient
3. Power Dissipation
Power dissipation considerations:
- Maximum power rating
- Temperature derating
- Safe operating area
- Thermal runaway prevention
4. Heat Sink Selection
Heat sink requirements calculation:
- Required thermal resistance
- Surface area and fin design
- Mounting considerations
- Air flow requirements
5. Thermal Conductivity Calculations
How to calculate thermal conductivity and related parameters:
Parameter | Formula | Units |
---|---|---|
Thermal Conductivity | k = (Q × L)/(A × ΔT) | W/(m·K) |
R-Value | R = L/(k × A) | m²·K/W |
6. Thermal Expansion Analysis
Calculating thermal expansion in different materials:
- Linear Expansion:
- ΔL = α × L × ΔT
- α: Linear expansion coefficient
- L: Original length
- ΔT: Temperature change
- Material Coefficients:
- Steel: 11-13 × 10⁻⁶/°C
- Aluminum: 23-24 × 10⁻⁶/°C
- Copper: 16-17 × 10⁻⁶/°C
- Glass: 8-9 × 10⁻⁶/°C
7. Thermal Equilibrium
How to calculate thermal equilibrium temperature:
System Type | Formula | Example |
---|---|---|
Two Bodies | Tf = (m₁c₁T₁ + m₂c₂T₂)/(m₁c₁ + m₂c₂) | Metal-water system |
Multiple Bodies | Tf = Σ(mᵢcᵢTᵢ)/Σ(mᵢcᵢ) | Complex systems |
8. Thermal Efficiency
How to calculate thermal efficiency in different systems:
System Type | Formula | Typical Range |
---|---|---|
Heat Engine | η = (Qh - Qc)/Qh | 30-60% |
Rankine Cycle | η = Wnet/Qin | 35-45% |
9. Thermal Boundary Layer
Calculating thermal boundary layer thickness:
- Laminar Flow:
- δt = 5x/√(Rex × Pr)
- Rex: Reynolds number
- Pr: Prandtl number
- x: Distance from leading edge
- Key Parameters:
- Flow velocity
- Fluid properties
- Surface temperature
- Heat transfer coefficient
10. Thermal Time Constant
Understanding thermal response time:
Parameter | Formula | Application |
---|---|---|
Time Constant | τ = R × C | Transient response |
Temperature Rise | T(t) = Tf(1 - e^(-t/τ)) | Dynamic behavior |
11. Thermal Stress Analysis
How to calculate thermal stress in materials:
Parameter | Formula | Considerations |
---|---|---|
Thermal Stress | σ = E × α × ΔT | Material properties |
Strain Energy | U = (σ²/2E) × V | Volume effects |
12. PCB Thermal Design
PCB thermal calculations and considerations:
- Via Thermal Resistance:
- Rth = L/(k × A × N)
- N: Number of vias
- A: Via cross-section
- k: Copper conductivity
- Thermal Relief Design:
- Spoke width calculation
- Air gap spacing
- Copper thickness
- Connection angle
13. Thermal Noise Calculations
Understanding thermal noise in electronic systems:
Parameter | Formula | Notes |
---|---|---|
Noise Voltage | Vn = √(4kTRB) | Johnson noise |
Noise Power | Pn = kTB | Available power |
8. Design Guidelines
Best practices for thermal design:
- Temperature margin (20% typical)
- Power derating with temperature
- Proper component spacing
- Air flow optimization
- Thermal measurement points
- Worst-case analysis
Quick Reference
Typical Values
θjc: 0.5-5°C/W
θcs: 0.2-1°C/W
θsa: 1-50°C/W
Tj(max): 125-150°C
Thermal Compounds
Silicone: 0.7-3.0 W/m·K
Metal Oxide: 3-8 W/m·K
Liquid Metal: 40-80 W/m·K
Design Tips
- • Use proper thermal compound
- • Ensure good surface contact
- • Consider air flow direction
- • Monitor critical points
- • Add temperature sensors
- • Plan for maintenance